Study of MG49-PMMA Based Solid Polymer Electrolyte

نویسندگان

  • A. Ahmad
  • H. Hamzah
چکیده

The studies of rubber-polymer blends as solid polymer electrolyte for electrochemical devices application have been investigated. The electrolyte films were prepared by solution casting technique. The effect of poly(methyl methacrylate) (PMMA) and lithium tetrafluoroborate (LiBF4), salt concentration on chemical interaction, ionic conductivity, structure and morphology of 49% poly(methyl methacrylate)–grafted natural rubber (MG49) have been analyzed by using fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS), x-ray diffraction (XRD) and scanning electron microscopy (SEM). Infrared analysis showed that the interaction between oxygen atoms and lithium ion occurred at ether (C-O-C) and carbonyl (C=O) group in the MMA host. The highest ionic conductivity for blended MG49-PMMA films is 8.3 10 -6 S cm -1 as compared to MG49 electrolyte with 9.6 10 -10 S cm -1 at 25 wt. % LiBF4. The structural analysis showed the reduction of MMA crystallinity phase at the highest conductivity for both systems. Meanwhile, morphological analysis shows that recrystallization of LiBF4 salts have occurred in the electrolyte system after the optimum conductivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Salt Concentration on Conductivity and Discharge Characteristics of PMMA Based Polymer Electrolyte System

Solid polymer electrolyte films based on PMMA were prepared in different NaClO4 salt concentrations by solution cast technique. The features of complexion of these electrolytes were studied by X-ray diffraction (XRD). Film morphology was examined by Scanning Electron Microscopy (SEM). The electrical conductivity of pure and NaClO4 doped polymer electrolyte films was studied in the temperature r...

متن کامل

Microporous gel polymer electrolytes for lithium rechargeable battery application

Microporous poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) membranes were prepared using the phase-separation method. Then, the membranes were immersed in liquid electrolyte to form polymer electrolytes. The effects of PMMA on the morphology, degree of crystallinity, porosity, and electrolyte uptake of the PVDF membrane were studied. The addition of PMMA increased the pore size...

متن کامل

Effects of addition of BaTiO3 Nano particles on the conductivity of PVdF/PMMA based polymer blend electrolytes

Composite polymer electrolyte (CPE) membranes, comprising poly (vinylidene fluoride) (PVdF)/poly (methyl methacrylate) (PMMA), BaTiO3 as ceramic filler and LiBF4 as the lithium salt were prepared using a solution casting technique. The prepared membranes were subjected to XRD, FT-IR, impedance spectroscopy and thermal stability studies. The incorporation of nanofiller greatly enhanced the ionic...

متن کامل

Synthesis and Characterization of Pmma-based Polymer Gel Electrolyte

PMMA based Polymer Gel Electrolytes have been prepared with different concentrations of salt (NaI) by gelation method. This study has been carried out to understand the effect of salt concentration on conductivity of polymer gel electrolyte. The prepared samples are characterized by XRD, optical microscopy, FTIR and Dielectric spectroscopy. The XRD studies revealed that the prepared polymer gel...

متن کامل

In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries

Nowadays it is extremely urgent to seek high performance solid polymer electrolyte that possesses both interfacial stability toward lithium/graphitic anodes and high voltage cathodes for high energy density solid state batteries. Inspired by the positive interfacial effect of vinylene carbonate additive on solid electrolyte interface, a novel poly (vinylene carbonate) based solid polymer electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011